Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(18): 12850-12856, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38648558

ABSTRACT

Acetylene production from mixed α-olefins emerges as a potentially green and energy-efficient approach with significant scientific value in the selective cleavage of C-C bonds. On the Pd(100) surface, it is experimentally revealed that C2 to C4 α-olefins undergo selective thermal cleavage to form surface acetylene and hydrogen. The high selectivity toward acetylene is attributed to the 4-fold hollow sites which are adept at severing the terminal double bonds in α-olefins to produce acetylene. A challenge arises, however, because acetylene tends to stay at the Pd(100) surface. By using the surface alloying methodology with alien Au, the surface Pd d-band center has been successfully shifted away from the Fermi level to release surface-generated acetylene from α-olefins as a gaseous product. Our study actually provides a technological strategy to economically produce acetylene and hydrogen from α-olefins.

2.
Angew Chem Int Ed Engl ; : e202401311, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606491

ABSTRACT

Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.

3.
J Am Chem Soc ; 146(15): 10822-10832, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38591182

ABSTRACT

Cerium-stabilized zirconia (Ce1-xZrxOy, CZO) is renowned for its superior oxygen storage capacity (OSC), a key property long believed to be beneficial to catalytic oxidation reactions. However, 50% Ce-containing CZO recorded with the highest OSC has disappointingly poor performance in catalytic oxidation reactions compared to those with higher Ce contents but lower OSC ability. Here, we employ global neural network (G-NN)-based potential energy surface exploration methods to establish the first ternary phase diagram for bulk structures of CZO, which identifies three critical compositions of CZO, namely, 50, 60, and 80% Ce-containing CZO that are thermodynamically stable under typical synthetic conditions. 50% Ce-containing CZO, although having the highest OSC, exhibits the lowest O vacancy (Ov) diffusion rate. By contrast, 60% Ce-containing CZO, despite lower OSC (33.3% OSC compared to that of 50% Ce-containing CZO), reaches the highest Ov diffusion ability and thus offers the highest CO oxidation catalytic performance. The physical origin of the high performance of 60% Ce-containing CZO is the abundance of energetically favorable Ov pairs along the ⟨110⟩ direction, which reduces the energy barrier of Ov diffusion in the bulk and promotes O2 activation on the surface. Our results clarify the long-standing puzzles on CZO and point out that 60% Ce-containing CZO is the most desirable composition for typical CZO applications.

4.
ACS Appl Mater Interfaces ; 16(12): 15023-15031, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498850

ABSTRACT

Interface-influenced crystallization is crucial to understanding the nucleation- and growth-dominated crystallization mechanisms in phase-change materials (PCMs), but little is known. Here, we find that composition vacancy can reduce the interface energy by decreasing the coordinate number (CN) at the interface. Compared to growth-dominated GeTe, nucleation-dominated Ge2Sb2Te5 (GST) exhibits composition vacancies in the (111) interface to saturate or stabilize the Te-terminated plane. Together, the experimental and computational results provide evidence that GST prefers (111) with reduced CN. Furthermore, the (8 - n) bonding rule, rather than CN6, in the nuclei of both GeTe and GST results in lower interface energy, allowing crystallization to be observed at the simulation time in general PCMs. In comparison to GeTe, the reduced CN in the GST nuclei further decreases the interface energy, promoting faster nucleation. Our findings provide an approach to designing ultrafast phase-change memory through vacancy-stabilized interfaces.

5.
Angew Chem Int Ed Engl ; 63(22): e202403466, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38451163

ABSTRACT

Tailoring the selectivity at the electrode-electrolyte interface is one of the greatest challenges for heterogeneous electrocatalysis, and complementary strategies to catalyst structural designs need to be developed. Herein, we proposed a new strategy of controlling the electrocatalytic pathways by lateral adsorbate interaction for the bio-polyol oxidation. Redox-innocent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) anion possesses the alcoholic property that facilely adsorbs on the nickel oxyhydroxide catalyst, but is resistant to oxidation due to the electron-withdrawing trifluoromethyl groups. The alien HFIP adsorbents can compete with bio-polyols and form a mixed adsorbate layer that creates lateral adsorbate interaction via hydrogen bonding, which achieved a >2-fold enhancement of the oxalate selectivity to 55 % for the representative glycerol oxidation and can be extended to various bio-polyol substrates. Through in situ spectroscopic analysis and DFT calculation on the glycerol oxidation, we reveal that the hydrogen-bonded adsorbate interaction can effectively tune the adsorption energies and tailor the oxidation capabilities toward the targeted products. This work offers an additional perspective of tuning electrocatalytic reactions via introducing redox-innocent adsorbates to create lateral adsorbate interactions.

6.
Nat Commun ; 15(1): 540, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225230

ABSTRACT

The limited surface coverage and activity of active hydrides on oxide surfaces pose challenges for efficient hydrogenation reactions. Herein, we quantitatively distinguish the long-puzzling homolytic dissociation of hydrogen from the heterolytic pathway on Ga2O3, that is useful for enhancing hydrogenation ability of oxides. By combining transient kinetic analysis with infrared and mass spectroscopies, we identify the catalytic role of coordinatively unsaturated Ga3+ in homolytic H2 dissociation, which is formed in-situ during the initial heterolytic dissociation. This site facilitates easy hydrogen dissociation at low temperatures, resulting in a high hydride coverage on Ga2O3 (H/surface Ga3+ ratio of 1.6 and H/OH ratio of 5.6). The effectiveness of homolytic dissociation is governed by the Ga-Ga distance, which is strongly influenced by the initial coordination of Ga3+. Consequently, by tuning the coordination of active Ga3+ species as well as the coverage and activity of hydrides, we achieve enhanced hydrogenation of CO2 to CO, methanol or light olefins by 4-6 times.

7.
J Am Chem Soc ; 145(50): 27774-27787, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38079498

ABSTRACT

Solid electrolytes (SEs) are central components that enable high-performance, all-solid-state lithium batteries (ASSLBs). Amorphous SEs hold great potential for ASSLBs because their grain-boundary-free characteristics facilitate intact solid-solid contact and uniform Li-ion conduction for high-performance cathodes. However, amorphous oxide SEs with limited ionic conductivities and glassy sulfide SEs with narrow electrochemical windows cannot sustain high-nickel cathodes. Herein, we report a class of amorphous Li-Ta-Cl-based chloride SEs possessing high Li-ion conductivity (up to 7.16 mS cm-1) and low Young's modulus (approximately 3 GPa) to enable excellent Li-ion conduction and intact physical contact among rigid components in ASSLBs. We reveal that the amorphous Li-Ta-Cl matrix is composed of LiCl43-, LiCl54-, LiCl65- polyhedra, and TaCl6- octahedra via machine-learning simulation, solid-state 7Li nuclear magnetic resonance, and X-ray absorption analysis. Attractively, our amorphous chloride SEs exhibit excellent compatibility with high-nickel cathodes. We demonstrate that ASSLBs comprising amorphous chloride SEs and high-nickel single-crystal cathodes (LiNi0.88Co0.07Mn0.05O2) exhibit ∼99% capacity retention after 800 cycles at ∼3 C under 1 mA h cm-2 and ∼80% capacity retention after 75 cycles at 0.2 C under a high areal capacity of 5 mA h cm-2. Most importantly, a stable operation of up to 9800 cycles with a capacity retention of ∼77% at a high rate of 3.4 C can be achieved in a freezing environment of -10 °C. Our amorphous chloride SEs will pave the way to realize high-performance high-nickel cathodes for high-energy-density ASSLBs.

8.
JACS Au ; 3(11): 2964-2972, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034951

ABSTRACT

Nickel peroxides are a class of stoichiometric oxidants that can selectively oxidize various organic compounds, but their molecular level structure remained elusive until now. Herein, we utilized structural prediction using the Stochastic Surface Walking method based on a neural network potential energy surface and advanced characterization using the as-synthesized nickel peroxide to unravel its chemical identity as the bridging superoxide containing nickel hydroxide, or nickel superoxyhydroxide. Superoxide incorporation tunes the local chemical environment of nickel and oxygen beyond the conventional Bode plot, offering a 6.4-fold increase in the electrocatalytic activity of urea oxidation. A volcanic dependence of the activity on the oxygen equivalents leads to the proposed active site of the Ni(OO)(OH)Ni five-membered ring. This work not only unveils the possible structures of nickel peroxides but also emphasizes the significance of tailoring the oxygen environment for advanced catalysis.

11.
J Chem Theory Comput ; 19(21): 7972-7981, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37856312

ABSTRACT

The high dimensional machine learning potential (MLP) that has developed rapidly in the past decade represents a giant step forward in large-scale atomic simulation for complex systems. The long-range interaction and the poor description of chemical reactions are typical problems of high dimensional MLP, which are mainly caused by the poor structure discrimination of the atom-centered ML model. Herein, we propose a low-cost neural-network-based MLP architecture for fitting global potential energy surface data, namely, G-MBNN, that can offer improved energy and force resolution on a complex potential energy surface. In G-MBNN, a set of many-body energy terms based on the local atomic environment are explicitly included in computing the total energy─the total energy of the system is written as the sum of atomic energy and many-body energy contributions. These extra many-body energy terms are computationally low-cost and, importantly, can provide easy access to delicate energy terms in complex systems such as very short repulsion, long-range attractions, and sensitive angular-dependent covalent interactions. We implement G-MBNN in the LASP code and demonstrate the improved accuracy of the new framework in representative systems, including ternary-element energy materials LiCoOx, TiO2 with defects, and a series of organic reactions.

12.
Chem Sci ; 14(35): 9461-9475, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37712046

ABSTRACT

Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) because of its great significance in industry has attracted huge attention since its discovery. For Fe-based catalysts, after decades of efforts, even the product distribution remains poorly understood due to the lack of information on the active site and the chain growth mechanism. Herein powered by a newly developed machine-learning-based transition state (ML-TS) exploration method to treat properly reaction-induced surface reconstruction, we are able to resolve where and how long-chain hydrocarbons grow on complex in situ-formed Fe-carbide (FeCx) surfaces from thousands of pathway candidates. Microkinetics simulations based on first-principles kinetics data further determine the rate-determining and the selectivity-controlling steps, and reveal the fine details of the product distribution in obeying and deviating from the Anderson-Schulz-Flory law. By showing that all FeCx phases can grow coherently upon each other, we demonstrate that the FTS active site, namely the A-P5 site present on reconstructed Fe3C(031), Fe5C2(510), Fe5C2(021), and Fe7C3(071) terrace surfaces, is not necessarily connected to any particular FeCx phase, rationalizing long-standing structure-activity puzzles. The optimal Fe-C coordination ensemble of the A-P5 site exhibits both Fe-carbide (Fe4C square) and metal Fe (Fe3 trimer) features.

13.
Sci Adv ; 9(35): eadh3784, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656794

ABSTRACT

Water in Earth's deep interior is predicted to be hydroxyl (OH-) stored in nominally anhydrous minerals, profoundly modulating both structure and dynamics of Earth's mantle. Here, we use a high-dimensional neuro-network potential and machine learning algorithm to investigate the weight percent water incorporation in stishovite, a main constituent of the subducted oceanic crust. We found that stishovite and water prefer forming medium- to long-range ordered superstructures, featuring one-dimensional (1D) water channels. Synthesizing single crystals of hydrous stishovite, we verified the ordering of OH- groups in the water channels through optical and nuclear magnetic resonance spectroscopy and found an average H-H distance of 2.05(3) Å, confirming simulation results. Upon heating, H atoms were predicted to behave fluid-like inside the channels, leading to an exotic 1D superionic state. Water-bearing stishovite could feature high ionic mobility and strong electrical anisotropy, manifesting as electrical heterogeneity in Earth's mantle.

14.
J Am Chem Soc ; 145(28): 15553-15564, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401830

ABSTRACT

Both cis- and trans- tetracyclic spiroindolines are the core of many important biologically active indole alkaloids, but the divergent synthesis of these important motifs is largely hampered by the limited stereoselectivity control. A facile stereoinversion protocol is reported here in Michael addition-initiated tandem Mannich cyclizations for constructing tetracyclic spiroindolines, providing an easy access to two diastereoisomeric cores of monoterpene indole alkaloids with high selectivity. The mechanistic studies including in situ NMR experiments, control experiments, and DFT calculations reveal that the reaction undergoes a unique retro-Mannich/re-Mannich rearrangement including a C-C bond cleavage that is very rare for a saturated six-membered carbocycle. Insights into the stereoinversion process have been uncovered, and the major effects were determined to be the electronic properties of N-protecting groups of the indole with the aid of Lewis acid catalysts. By understanding these insights, the stereoselectivity switching strategy is also smoothly applied from enamine substrates to vinyl ether substrates, which are enriched greatly for the divergent synthesis and stereocontrol of monoterpene indole alkaloids. The current reaction also proves to be very practical and was successfully applied to the gram-scale total synthesis of strychnine and deethylibophyllidine in short routes.

15.
Angew Chem Int Ed Engl ; 62(39): e202303200, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37278979

ABSTRACT

Neutral water oxidation is a crucial half-reaction for various electrochemical applications requiring pH-benign conditions. However, its sluggish kinetics with limited proton and electron transfer rates greatly impacts the overall energy efficiency. In this work, we created an electrode/electrolyte synergy strategy for simultaneously enhancing the proton and electron transfers at the interface toward highly efficient neutral water oxidation. The charge transfer was accelerated between the iridium oxide and in situ formed nickel oxyhydroxide on the electrode end. The proton transfer was expedited by the compact borate environment that originated from hierarchical fluoride/borate anions on the electrolyte end. These concerted promotions facilitated the proton-coupled electron transfer (PCET) events. Due to the electrode/electrolyte synergy, Ir-O and Ir-OO- intermediates could be directly detected by in situ Raman spectroscopy, and the rate-limiting step of Ir-O oxidation was determined. This synergy strategy can extend the scope of optimizing electrocatalytic activities toward more electrode/electrolyte combinations.

16.
JACS Au ; 3(4): 1162-1175, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124303

ABSTRACT

Pt-Ni alloy is by far the most active cathode material for oxygen reduction reaction (ORR) in the proton-exchange membrane fuel cell, and the addition of a tiny amount of a third-metal Mo can significantly improve the catalyst durability and activity. Here, by developing machine learning-based grand canonical global optimization, we are able to resolve the in situ structures of this important three-element alloy system under ORR conditions and identify their correlations with the enhanced ORR performance. We disclose the bulk phase diagram of Pt-Ni-Mo alloys and determine the surface structures under the ORR reaction conditions by exploring millions of likely structure candidates. The pristine Pt-Ni-Mo alloy surfaces are shown to undergo significant structure reconstruction under ORR reaction conditions, where a surface-adsorbed MoO4 monomer or Mo2O x dimers cover the Pt-skin surface above 0.9 V vs RHE and protect the surface from Ni leaching. The physical origins are revealed by analyzing the electronic structure of O atoms in MoO4 and on the Pt surface. In viewing the role of high-valence transition metal oxide clusters, we propose a set of quantitative measures for designing better catalysts and predict that six elements in the periodic table, namely, Mo, Tc, Os, Ta, Re, and W, can be good candidates for alloying with PtNi to improve the ORR catalytic performance. We demonstrate that machine learning-based grand canonical global optimization is a powerful and generic tool to reveal the catalyst dynamics behavior in contact with a complex reaction environment.

17.
J Chem Phys ; 158(14): 141002, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061480

ABSTRACT

Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid-liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.

18.
Nat Commun ; 14(1): 1184, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864050

ABSTRACT

Simultaneously achieving abundant and well-defined active sites with high selectivity has been one of the ultimate goals for heterogeneous catalysis. Herein, we construct a class of Ni hydroxychloride-based inorganic-organic hybrid electrocatalysts with the inorganic Ni hydroxychloride chains pillared by the bidentate N-N ligands. The precise evacuation of N-N ligands under ultrahigh-vacuum forms ligand vacancies while partially retaining some ligands as structural pillars. The high density of ligand vacancies forms the active vacancy channel with abundant and highly-accessible undercoordinated Ni sites, exhibiting 5-25 fold and 20-400 fold activity enhancement compared to the hybrid pre-catalyst and standard ß-Ni(OH)2 for the electrochemical oxidation of 25 different organic substrates, respectively. The tunable N-N ligand can also tailor the sizes of the vacancy channels to significantly impact the substrate configuration leading to unprecedented substrate-dependent reactivities on hydroxide/oxide catalysts. This approach bridges heterogenous and homogeneous catalysis for creating efficient and functional catalysis with enzyme-like properties.

19.
Phys Chem Chem Phys ; 25(12): 8934-8947, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916876

ABSTRACT

The mechanism of Sn and Nb influence on the fraction of tetragonal ZrO2 in oxide films on Zr alloys and their influence mechanism on corrosion resistance of Zr alloys, despite decades of research, are ambiguous due to the lack of kinetic knowledge of phase evolution of ZrO2 with doping. Using stochastic surface walking and density functional theory calculations, we investigate the influence of Nb and Sn on the stability of tetragonal (t) and monoclinic (m) ZrO2, and t-m phase transition in oxide films. We found that though Nb and Sn result in similar apparent variation trends in the t-phase fraction in oxide films, their influences on t-m phase transition differ significantly, which is the underlying origin of different influences of the t-phase fraction in oxide films on the corrosion resistance of Zr alloys with Sn and Nb alloying. These results clarify an important aspect of the relationship between the microstructure and corrosion resistance of Zr alloys.

20.
Angew Chem Int Ed Engl ; 61(50): e202214977, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36261886

ABSTRACT

Adipic acid is a central platform molecule for the polymer industry. Production of adipic acid with electroreforming technology is more sustainable compared to the thermochemical synthesis route. We discovered that incorporation of Cu2+ into a Ni hydroxide lattice significantly improved the electrocatalytic oxidation of cyclohexanol into adipate with a high yield (84 %) and selectivity (87 %). This Cu promotion effect serves as a mechanistic probe that can be combined with product analysis, steady-state kinetics, and in situ spectroscopy. A two-electron oxidation into cyclohexanone first occurs, followed by consecutive hydroxylation and C-C cleavage before dione formation. The central role of Cu2+ is to weaken the interaction between the NiOOH and surface-adsorbed O-centered radical that facilitates subsequent C-C cleavage. This enables a highly efficient two-electrode system capable of electroreforming KA oil into adipate and pure H2 .

SELECTION OF CITATIONS
SEARCH DETAIL
...